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Abstract 

Optical coherence tomography angiography (OCT-A) is a new non-invasive technology for imaging 
of retinal and choroidal vasculature of the macular area with resolution comparable to histological 
sections. OCT-A does not require usage of intravenous dye, contrary to fluorescein angiography, the 
current gold standard for imaging of retinal vessels, and indocyanine-green angiography, which is 
important for imaging of choroidal vessels. With the advancements in optical coherence 
tomography (OCT) scanning speeds and creation of powerful algorithms for improvement of image 
quality in recent years, OCT-A imaging of macular vasculature, superficial, deep and avascular 
retinal complex, as well as choriocapillaris and deep choroid has become available in everyday 
clinical practice. This review covers aspects important for understanding choroidal and retinal blood 
supply, as well as the development, mechanisms and clinical application of OCT and OCT-A 
technology. 

 

(Bajtl D, Bjeloš M, Bušić M, Rak B, Križanović A, Kuzmanović Elabjer B. Optical Coherence 
Tomography Angiography – A New Insight Into Macular Vasculature. SEEMEDJ 2019; 3(2); 63-75) 
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Introduction 

Optical coherence tomography angiography 
(OCT-A) is a novel non-invasive technology for 
detailed imaging of retinal and choroidal 
vasculature of the macular area. It utilizes laser 
light reflectance off moving erythrocytes, 
generating information about volumetric blood 
flow in all retinal layers and the choroid (1). The 
resolution of OCT-A is comparable to the 
resolution of histological sections (2). Unlike 
fluorescein angiography (FA) or indocyanine-
green angiography (ICG), OCT-A does not 
require the use of dye (1).  

Dye-based angiography has been the gold 
standard for imaging macular and choroidal 
vasculature for decades. Because of the risk of 
adverse reactions, particularly vomiting, nausea, 
allergic reaction and anaphylaxis, coupled with 
the time-consuming nature of the examination 
(10 to 30 minutes), dye-based angiography is not 
frequently used for monitoring the course of 
retinal vascular diseases. While FA can only 
delineate superficial retinal vasculature, ICG 
imaging is restricted to visualization of the 
choroidal circulation. Moreover, FA is not 
capable of imaging the radial peripapillary 
capillary network (RPC), which is very important 
for monitoring of glaucoma (3). 

FA is still the gold standard for detecting 
choroidal (CNV), retinal (NVE, neovascularization 
elsewhere), disc (NVD), neovascularization of the 
disc) and irideal (NVI, neovascularization of the 
iris) neovascularization (4). 

Optical coherence tomography 
angiography- creating an image 

 Optical coherence tomography 

Optical coherence tomography (OCT) is a 
diagnostic technique that enables in vivo cross-
sectional visualization of the tissue in focus. It is 
currently used for imaging in cardiology, 
ophthalmology, oncology and dermatology (5). 
In ophthalmology, it was first introduced in 1991 
by Huang et al. (6). OCT uses interferometry to 
measure the amplitude and delay of reflected or 
backscattered near-infrared light from ocular 

structures. The depth of structure measured in 
this fashion is known as axial scan (A-scan). By 
sequential arranging of multiple A-scans in the 
transverse direction, a B-scan or cross-sectional 
image is generated (7).  

OCT is based on two techniques: time-domain 
(TD-OCT), introduced in 1996 (8), and frequency-
domain (FD-OCT), devised as spectral-domain 
(SD-OCT) and swept-source (SS-OCT). The 
importance of the advent of FD-OCT technology 
is the acceleration of slow scan so that artefacts 
caused by motion in earlier TD-OCT devices are 
no longer an impediment for better imaging of 
small vessels (9). 

Doppler OCT (DOCT) was first introduced 
concurrently by Izatt et al. (10) and Chen et al. (11) 
in 1997. DOCT provides quantitative volumetric 
information about blood flow, together with 
vascular and structural anatomy. However, it is 
limited to larger vessels (12). In clinical practice, 
DOCT is not widely used (12, 13). 

Optical coherence tomography angiography 
(OCT-A) 

OCT-A is a three-dimensional functional 
extension of OCT which uses repeated B-scans 
of the same retinal location to detect blood flow. 
In 2012, OCT-A was introduced as a method for 
imaging the retinal microvasculature (14). OCT-A 
signals are primarily used to detect the presence 
or absence of vessels, rather than to provide 
information about blood flow speed, enabling 
three-dimensional en face imaging (15). If retinal 
location is stationary (i.e. if there is no blood 
flow), the repeated B-scans will be identical. 
However, if the tissue’s optical scattering is time-
dependent because of the blood flow through 
the region, the repeated B-scans will vary. The 
most important vascular component that can 
induce backscattering of light is red blood cells. 
Areas of faster blood flow will show greater 
change over a unit of time. The exact 
relationship of this change in regard to flow 
speed depends on many parameters, such as 
OCT beam size and blood vessel size, and is not 
necessarily linear (16).  
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By using different algorithms, OCT-A can 
monitor flow even in transverse motion, while 
the other form of monitoring the motion of RBCs, 
Doppler shift (used in DOCT), can monitor flow 
only in axial motion. This enables OCT-A to 
monitor flow in microvasculature, while DOCT 
can monitor flow only in larger vessels (17).  
Optical resolution of commercially available 
OCT-A systems ranges between 5-10 μm in the 
axial, and averages ∼20 μm in the transverse 
direction (16). Smaller resolution improves the 
differentiation of retinal vasculature but 
increases sensitivity to eye motion. If the signal 
is below a threshold, a mask is generated. Errors 
in imaging caused by bulk tissue motion are 
reduced by using different eye tracking 
modalities (15). OCT-A quantification of blood 
flow, namely flow index and vessel density, has 
great clinical importance. Flow index is the 
average flow signal in the area of interest. 
Vascular density is the percentage of the area 
occupied by vessels (18). 

Image artefact is an anomaly in the visual 
presentation of information derived from an 
object. Projection artefact, one of the most 
important types of artefacts, represents the 
appearance of the object at a deeper location 
than where it exists in reality due to disturbance 
of the signal. Shadowing is the attenuation of a 
signal behind a scattering opacity or obstruction 
that absorbs the signal. Displacement artefact is 
caused by eye motion where one part of the 
image is from one retinal location, while the 
remaining part of the image is from a different 
retinal location. Stretch artefact is related to 
software correction of eye motion in which part 
of the image appears to be stretched. White line 
artefact is a white line seen due to eye 
movement (19).  

One of the most important limitations of OCT-A 
is a fixed area of the central field of view 
measuring 3 × 3, 6 × 6 and 12 × 12 mm. 
Visualization of the peripheral retina is thus not 
possible (19). OCT-A can detect blood flow 
above the minimum threshold only. Areas with 
flow under the threshold remain invisible (20, 21). 

For example, in case of branch retinal vascular 
occlusion, slow-flow areas may be perceived as 
areas of non-perfusion (21). Moreover, OCT-A is 
incapable of accurately determining vascular 
leakage, which is especially important in 
neovascular age-related macular degeneration 
(nAMD), diabetic macular oedema, and retinal 
vein occlusion (22). Because of the need for 
steady fixation, it is difficult to obtain images of 
children’s retina. 

Clinical use of OCT-A 

In OCT-A, vascular abnormalities manifest as 
abnormal vessel density (dry age-related 
macular degeneration, AMD), anomalous vessel 
geometry (dilated vessels, aneurysms in 
diabetic retinopathy, DR), abnormal flow (CNV) 
and absent flow (nonperfusion/capillary 
dropout in retinal artery or vein occlusion). 
Therefore, OCT-A is currently extensively useful 
for patients with variable retinal diseases (15). 
OCT-A concurrently obtains images of both 
retinal and choroidal macular vasculature 
divided into different layers based on their 
depth. Moreover, OCT-A enables the imaging of 
RPC, originating from choroidal vessels, which is 
particularly vulnerable to glaucoma and retinal 
vascular occlusion (23). Retinal capillary 
plexuses are divided into (a) superficial vascular 
plexus (SVP), located in the retinal nerve fibre 
layer (RNFL) and ganglion cell layer (GCL), and 
(b) deep vascular plexus (DVP) that extends 
down to the inner nuclear layer (24). DVP is 
subdivided into intermediate (ICP) and deep 
capillary plexus (DCP) (25). Additionally, OCT-A is 
the only method capable of visualizing CC 
separately from the deeper choroid (15). 

Foveal avascular zone (FAZ) 

The capability of OCT-A to image capillaries with 
high resolution has enabled researchers to study 
the foveolar avascular zone (FAZ) in greater 
detail than it had been possible in the past with 
FA. On an OCT-A scan, FAZ is presented as a 
discoid zone within the macula that is devoid of 
capillaries (Figure 1).  
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Figure 1. OCT-A image of the left eye of a healthy 60-year-old female patient. (A) Photography of the 
macula. (B) Foveal anatomy. (C) Foveal layers with depicted red blood cells (yellow). (D) Red blood 
cells (yellow) in the foveal area. Clear distinction is visible between (E) SVP, (F) DVP and (G) avascular 
complex of the retina. Images obtained from Spectralis® OCT (Heidelberg Engineering, Heidelberg, 
Germany). OCT-A-optical coherence angiography, OCT-optical coherence tomography, SVP-superficial vascular plexus, 

DVP-deep vascular plexus 

FAZ borders are manually drawn on a certain 
capillary plexus level. Parameters defining FAZ 
are divided into two groups. Area (in mm2), 
perimeter (length of the FAZ borders, in mm) and 
Feret’s diameter (maximum diameter of FAZ, in 
mm) asses the size, while circularity, axial ratio, 
roundness and solidity represent the shape of 
FAZ. FAZ circularity is the degree of 
resemblance to a perfect circle (4π × 
area/perimeter2). Axial ratio is obtained from a 
best-fit ellipse of the FAZ (length of major 
axis/length of minor axis of a best-fit ellipse). 
Roundness uses the best-fit ellipse and is similar 
to circularity, but is insensitive to irregular 
borders along the perimeter of the FAZ (4π × 
area/(length of major axis)2). Solidity describes 
the extent to which a shape is convex or concave 
(area/convex area). These parameters are 
calculated using computer software (26).  Most 
studies that investigated FAZ parameters in 
healthy individuals reported a larger deep area 
compared to the superficial area of FAZ (27, 28, 
29, 30). Superficial and deep FAZ area are larger 
in females (26, 31, 32), and this is possibly related 
to thinner fovea (32). The FAZ area and foveal 

thickness at both the SVP and DVP levels 
exhibited significant inverse correlation (26, 29, 
30). This could be explained by an association 
between higher metabolic demand of a thicker 
retina and a reduction of the FAZ area (30). 

Previous studies using FA observed an increase 
in the FAZ size with advancing age. However, FA 
as a diagnostic method is limited when it comes 
to SVP imaging and should not be correlated 
with OCT-A (32, 33). The studies that the 
examined changes that occur in FAZ with aging 
are inconclusive. Some studies reported 
significant (34, 35), while others observed 
insignificant changes in the FAZ area with aging 
(27, 28, 29, 36). Yu et al. found an increase in the 
FAZ size by 1.48% annually, with a decrease in 
vascular density by 0.4% (35). In studies using FA, 
it was proposed that in patients aged 40 or older, 
age was positively correlated with the FAZ area 
(32); however, studies using OCT-A did not 
support this conclusion (36). Coscas et al. divided 
their participants by age into three groups: 20–
39 years old, 40–59 years old, and 60 years old 
or older (37). The FAZ size was smaller in the 
oldest group compared to the two younger 
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groups at the level of SVP. No statistically 
significant difference was found for the level of 
DVP among the groups (37). 

A single study evaluated the FAZ shape in 
healthy eyes and demonstrated that none of 

these parameters was significantly correlated 
with age, sex and refractive error (26). There are 
no homogenous studies about FAZ parameters 
in children (Figure 2). 

 

 

Figure 2. OCT-A image of the right eye of a healthy 4-year-old female patient. (A) Photography of the 
macula. (B) Foveal anatomy. (C) Foveal layers with depicted red blood cells (yellow). (D) Red blood 
cells (yellow) in the foveal area. Clear distinction is visible between (E) SVP, (F) DVP and (G) avascular 
complex of the retina. Images obtained from Spectralis® OCT (Heidelberg Engineering, Heidelberg, 
Germany). OCT-A-optical coherence angiography, OCT-optical coherence tomography, SVP-superficial vascular plexus, 

DVP-deep vascular plexus 

 

Choroidal neovascularization (CNV) 

 

The advent of OCT has enabled new 
classification of CNV: type 1 (beneath the RPE), 
which is the most common type, type 2 (above 
the RPE) (Figure 3) and type 3 (intra-retinal).   
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Figure 3. OCT-A image of the right eye of a 71-year-old male patient with type 2 CNV. (A) Photography 
of the macula with oedema of the papillomacular area. (B) Foveal anatomy. (C) Foveal layers with 
depicted red blood cells (yellow). (D) Red blood cells (yellow) in the foveal area. OCT images 
demonstrate mild oedema of retinal layers and Bruch’s membrane rupture with NV emerging from 
the choroid. (E) SVP devoid of vessels in the area of the pathologic process. (F) DVP with NV. (G) NV 
emerging from the choroid. Images obtained from Spectralis® OCT (Heidelberg Engineering, 
Heidelberg, Germany). OCT-A-optical coherence angiography, CNV-choroidal neovascularization, OCT-optical 

coherence tomography, SVP-superficial vascular plexus, DVP-deep vascular plexus, NV-neovascularization 

 

Type 1 is the most common type of CNV in AMD. 
FA is incapable of determining whether CNV is 
above or beneath the RPE and thus of defining 
the type of CNV or of detecting a polyp in 
polypoidal choroidal vasculopathy, a subtype of 
type 1 CNV. CNV therefore requires multimodal 
imaging (OCT, FA, ICG) (38).  OCT-A can vastly 
improve the definition of exact CNV dimensions 
compared to FA (39, 40, 41, 42). This is of high 
importance as larger CNVs have poorer visual 
outcome (39). 

OCT-A introduced new biomarkers for 
predicting disease activity and duration. Greater 
vessel calibres are fairly unresponsive to 
treatment due to excessive covering with 
pericytes (39). Encouraged by these insights, the 
greatest vascular calibre (GVC) was proposed as 
the marker of long-standing disease. The GVC 
could reveal the duration of CNV, which is 
important due to excessive damage caused by 
long-standing type 1 CNV, which remains 

asymptomatic longer than type 2 (39). More 
mature vessels are found in type 1 CNV 
compared to type 2 (43). As a biomarker for 
active CNV, tiny branching vessels (TBV) can be 
used due to their presence in 82% of active 
lesions and only 30% of quiescent ones (44). The 
peripheral arcade is also present in 82% of active 
lesions compared to 40% of quiescent ones (44, 
45). TBVs are important because they are more 
vulnerable to treatment due to their lack of 
pericytes compared to prominent vessels. In 
addition, pericytes appear later than 
angiogenesis, which means that TBVs could be 
related to the exudative status of the lesion; they 
could enable prompt treatment in order to 
preserve the macular architecture and thus, 
visual acuity (45). In light of these findings, it 
seems reasonable to include OCT-A imaging in 
the monitoring of all patients with CNV (45). 

Nonexudative (subclinical) CNV was first 
described in post-mortem eyes by Green et al. 
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(46) and Sarks et al. (47) as abnormal choroidal 
vessels passing through breaks in Bruch’s 
membrane in the absence of overlying 
haemorrhage or exudation. These lesions, which 
presented as plaques on ICG (48), can now be 
diagnosed more accurately using OCT-A (49). 
Compared with ICGA, the sensitivity and 
specificity of OCT-A in detecting subclinical CNV 
was reported as 81.8% and 100 %, respectively 
(50). It would be beneficial to determine the 
presence of subclinical CNV in fellow eyes of 
patients with unilateral exudative AMD, which 
ranges from 6.25% to 27%, respectively (49). The 
progression rate of subclinical CNV to exudative 
form is 20% and the existence of a possible 
protective effect of subclinical CNV against 
geographic atrophy progression has been 
suggested (51). Reduction in CC flow adjacent to 
CNV could be a marker of imminent exudation in 
subclinical CNV, as new evidence demonstrates 
(49, 51). Exudation may be triggered by the 
underlying progression of CC nonperfusion. 
Hypoxia of the retinal pigment epithelium 
causes the release of abnormal vascular 
endothelial growth factor (VEGF) signalling with 
growth and eventual exudations of a CNV (49). 

Glaucoma 

Pathophysiology of glaucoma and the onset of 
changes in macular vasculature are yet to be 
elucidated. Recent studies have suggested that 
macular vascular changes in glaucoma may be 
related to mechanisms other than intraocular 
pressure (IOP) (52, 53). In early glaucoma, OCT-A 
revealed focal loss of RPC (54) and decreased 
parafoveal vascular density (52). In eyes with 
central visual field defects, FAZ perimeter could 
be used as a biomarker for detecting glaucoma 
(55). In a recent study, eyes with open-angle 
glaucoma demonstrating central visual field 
defects (CVFDs) confined to a single hemifield 
exhibited a larger FAZ area and a less circular 
FAZ than those with peripheral visual field 
defects (55). Loss of FAZ circularity and 
increased size of the FAZ area were significantly 
correlated with the presence and severity of 
CVFD at initial presentation (55). 

Parafoveal and peripapillary vascular density 
decrease in primary open-angle glaucoma 
compared to normal tension glaucoma (52, 53) is 
inconsistent with the earlier described 
mechanism of normal tension glaucoma 
development through its association with 
vascular compromise as a contrast to primary 
open-angle glaucoma, where the 
pathophysiology is mostly correlated with 
intraocular pressure (56). It is unclear whether 
vascular density changes in glaucoma antedate 
ganglion cell loss or are a direct result of loss of 
neural tissue and thus a marker for both primary 
open-angle glaucoma and normal tension 
glaucoma (53). 

Diabetic retinopathy 

Optical coherence tomography angiography 
offers a non-invasive alternative in the 
investigation of diabetic retinopathy. FAZ has 
been one of the most extensively investigated 
areas in diabetic retinopathy (57). In eyes with 
diabetic retinopathy, the circularity and axial 
ratio of the FAZ are significantly different from 
normal eyes. These metrics could be predictors 
of disease progression and response to therapy 
(58). However, even without retinopathy, OCT-A 
demonstrated significantly enlarged FAZ areas 
compared to controls – in both the SCP and DCP 
(57).  

In eyes with diabetic retinopathy, OCT-A can 
identify microaneurysms (MA), microvascular 
abnormalities associated with diabetic macular 
oedema (DMO), and areas of capillary non-
perfusion associated with neovascularization, 
allowing enhanced analysis compared to FA in 
that their intraretinal location beyond SVP can be 
identified (59). However, the sensitivity for MA 
detection and small field of view are currently 
the major limitations of OCT-A technology (57). A 
lower number of MA visible on OCT-A as 
compared to FA may be due to slower flow 
speeds in MA that are beyond the OCT-A 
detection threshold (60) or due to focal staining 
of vessel walls allowing superior identification 
by FA (61).  

In eyes with proliferative diabetic retinopathy, 
OCT-A can visualize preretinal 
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neovascularization. Compared to FA, OCT-A has 
demonstrated moderate agreement for grading 
of diabetic macular ischemia (59).  

By enabling three-dimensional visualization of 
the individual retinal vascular networks, OCT-A 
is enhancing our understanding of the role of 
deeper vasculature in the pathogenesis of 
diabetic retinopathy and maculopathy. OCT-A 
can differentiate between different subgroups 
of diabetic retinopathy severity by measuring 
perfusion indices in eyes with DR and branching 
complexity of vessels (57). The decrease in 
vascular density with the progression of the 
disease has already been established (62, 63). 
Reduction of vascular density in DVP occurs 
earlier in the course of the disease and this 
finding gives rise to possible new studies 
concerning vascular density in DVP as a marker 
of disease severity in earlier stages of diabetic 
retinopathy (60). FAZ enlargement and 
reduction of parafoveal deep and superficial 
vascular density can be beneficial as a marker of 
increased disease severity in diabetic 
retinopathy (60). 

 

Central serous chorioretinopathy 

Diagnosing CNV as a complication of chronic 
central serous chorioretinopathy (CSCR) using 
FA is difficult due to the confusing signs of the 
primary disease, such as choroidal 
hyperpermeability, retinal pigment epithelium 
leakage, or atrophy and cystic macular oedema 
(64). OCT-A has the advantage of identifying only 
the flow, without the exudative component, and 
it allows for depth-correlated visualization of 
flow with separation of the signal generated 
from the pathologic area between RPE and the 
Bruch membrane from the CC. These 
advantages of OCT-A are more prominent for 
type 1 CNV (65). CNV locations correspond to 
slightly irregular and hyperreflective RPE areas 
(66), which is consistent with earlier observations 
(67). 

With OCT-A, a higher detection rate of CNV 
(mainly type 1) in chronic CSCR is achieved 
compared to ICG and FA (65). Thus, in case of 

CSCR, using OCT-A B-scan and en-face mode is 
always recommended in order to define the area 
of flat irregular pigment epithelial detachment, 
which is claimed to be imperative for the CNV 
diagnosis (65). 

Ocular oncology 

A significant enlargement of the deep FAZ and a 
decrease in the superficial and deep vascular 
density in eyes with choroidal melanoma were 
observed compared to healthy eyes (68). These 
changes are correlated with larger tumour size 
and presence of subretinal fluid, which could 
elucidate the pathogenesis of vision loss in 
patients with melanoma (68). One possible 
mechanism behind these changes is VEGF-
induced microvascular compromise preceding 
macular oedema (68). These features are absent 
in eyes with choroidal nevi, giving rise to easier 
differentiation of small melanoma from 
choroidal nevi (68).  

Early vascular changes in radiation retinopathy 
that can be detected by OCT-A as irregular 
widening of FAZ, discontinuity of retinal 
vasculature and retinal MA have been used as a 
part of a new grading scheme and treatment 
decisions for radiation retinopathy (69). 

Conclusion 

OCT-A is an important new non-invasive tool for 
imaging of the chorioretinal vasculature. It has 
provided new insights into the pathogenesis of 
multiple retinal and choroidal diseases, but its 
full contribution is yet to come. Regarding the 
paediatric population, the normal values have to 
be defined first in order for us to accurately 
elucidate the pathology. 
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